Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO_2 nanoparticles in vitro  被引量:7

Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO_2 nanoparticles in vitro

在线阅读下载全文

作  者:Xiaojia He Sabrieon Sanders Winfred G.Aker Yunfeng Lin Jessica Douglas Huey-min Hwang 

机构地区:[1]Department of Biology,Jackson State University [2]Department of Biological Sciences,Alcorn State University [3]Environmental Science Ph.D.Program,Jackson State University [4]Department of Chemistry and Biochemistry,Jackson State University [5]School of Polymers and High Performance Materials,The University of Southern Mississippi

出  处:《Journal of Environmental Sciences》2016年第4期50-60,共11页环境科学学报(英文版)

基  金:supported in part by the NSF-REU program(National Science Foundation-Research Experiences for Undergraduates,No.#CHE-1156111);the NSF-CREST program(National Science Foundation-Centers of Research Excellencein Science and Technology,No.#HRD-0833178)

摘  要:In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2^-).Data suggested that O2^- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2^- on rutile,but increased O2^- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase.In this study,the cytotoxicity of two different crystal phases of TiO2 nanoparticles,with surface modification by humic acid(HA),to Escherichia coli,was assessed.The physicochemical properties of TiO2 nanoparticles were thoroughly characterized.Three different initial concentrations,namely 50,100,and 200 ppm,of HA were used for synthesis of HA coated TiO2 nanoparticles(denoted as A/RHA50,A/RHA100,and A/RHA200,respectively).Results indicate that rutile(LC50(concentration that causes 50%mortality compared the control group)=6.5)was more toxic than anatase(LC50=278.8)under simulated sunlight(SSL)irradiation,possibly due to an extremely narrow band gap.It is noted that HA coating increased the toxicity of anatase,but decreased that of rutile.Additionally,AHA50 and RHA50had the biggest differences compared to uncoated anatase and rutile with LC50of 201.9 and21.6,respectively.We then investigated the formation of reactive oxygen species(ROS)by TiO2 nanoparticles in terms of hydroxyl radicals(OH)and superoxide anions(O2^-).Data suggested that O2^- was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation.We also observed that HA coating decreased the generation of OH and O2^- on rutile,but increased O2^- formation on anatase.Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E.coli more than anatase.

关 键 词:TiO2nanoparticles Escherichia coli Humic acid Crystallinity Surface coating 

分 类 号:X171.5[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象