检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学计算机通信工程学院,北京100083
出 处:《微型机与应用》2016年第8期61-64,共4页Microcomputer & Its Applications
基 金:国家自然科学基金(61272508)
摘 要:对于Web服务组合优化的问题,蚁群算法的求解主要是串行进行,收敛时间长,容易收敛于非最优解。在云计算环境中,将蚁群算法并行化,可对Web服务组合优化问题进行分布式并行求解。根据多目标优化模型给出基于多信息素的蚁群算法,使用MapReduce并行编程框架对蚁群算法中最耗时的部分——蚂蚁独立求解的过程并行化,给出了使用MapReduce改进的基于多信息素的蚁群优化算法,有效地对Web服务组合进行全局优化,弥补传统的蚁群算法求解过程的缺点。As to the problem of Web service composition optimization,ant colony optimization( ACO) is usually solved serially. However,it has long convergence time and is likely to converge to a non-optimal solution. In Cloud computing environment,with parallelized ACO Web service composition optimization can be solved in parallel. In this paper,it is abstracted to a multi-objective optimization problem,and a mathematical model is built. According to the multi-objective optimization model,a multi-pheromone algorithm based on ACO is given. MapReduce parallel programming framework is adopted to parallelize the most time-consuming part of ACO-independent ant solving. Finally,the improved multi-pheromone with MapReduce based on ACO is given to effectively perform global optimization to Web service composition,which overcomes the shortcomings of traditional ACO.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.123.168