基于谱聚类结合形态学分水岭的MRI图像分割算法  

在线阅读下载全文

作  者:吕绪洋 周燕琴[1] 张长江[1] 

机构地区:[1]广西师范学院计算机与信息工程学院,广西南宁530023

出  处:《软件导刊》2016年第5期202-203,共2页Software Guide

摘  要:针对NJW算法计算量大和分水岭算法易产生过分割现象且对噪声敏感的问题,提出一种有效且鲁棒的方法,即阈值形态学分水岭结合谱聚类(SC)算法对MRI图像进行分割。使用Frost滤波结合形态学闭运算对输入图像进行去噪和增强处理,采用阈值形态学分水岭算法对灰度图像进行预分割,并采用改进的SC算法进行全局最优聚类,得到分割结果图像。改进的SC算法是用K-HarmomcMeans(KHM)取替K-means(KM)进行聚类,可提高稳定性和算法性能。实验结果表明,该方法能有效分割MRI图像且具有计算快速的优点。

关 键 词:形态学 分水岭算法 KHM 谱聚类 

分 类 号:TP317.4[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象