检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237
出 处:《化工学报》2016年第5期1973-1981,共9页CIESC Journal
基 金:国家自然科学基金项目(61374140);国家自然科学基金青年基金项目(61403072)~~
摘 要:针对传统的多元统计故障监测方法往往需要假设测量数据服从单一高斯分布的不足,提出了一种基于非负矩阵分解(NMF)的多模态故障监测方法。首先使用标准的NMF算法对训练集数据进行聚类,将多模态数据划分到各个模态中;然后使用稀疏性正交非负矩阵分解(SONMF)算法对各模态分别建模,同时构造监控统计量进行故障监测。将提出的基于非负矩阵分解的多模态故障监测方法应用于数值例子和TE过程的仿真结果表明,该方法能够及时有效地检测出多模态过程中的故障。The traditional multivariate statistical fault detection methods are designed for single operating conditions and may produce erroneous conclusions if they are used for the multi-mode process monitoring. A novel multi-mode process monitoring approach based on non-negative matrix factorization(NMF) is proposed in this paper. First, the training set of data is clustered by the standard NMF algorithm and the multi-mode data are divided into each mode. Then, the sparseness orthogonal NMF(SONMF) algorithm is used to model every mode and the monitoring statistics are constructed to perform fault detection. The proposed method is applied to a numerical example and the TE process. The simulation results show that this method can effectively detect multi-mode process failure.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30