检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学控制科学与工程学院,济南250061
出 处:《电子与信息学报》2016年第5期1092-1098,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61273277;61203261);山东省自然科学基金(ZR2011FM032;ZR2012FQ003);高等学校博士学科点专项科研基金(20130131110038)~~
摘 要:交通标识检测中样本类别间的不平衡常常导致分类器的检测性能弱化,为了克服这一问题,该文提出一种基于感兴趣区域和HOG-MBLBP融合特征的交通标识检测方法。首先采用颜色增强技术分割提取出自然背景中交通标识所在的感兴趣区域;然后对标识样本库提取HOG-MBLBP融合特征,并用遗传算法对SVM交叉验证进行参数的优化选取,以此来训练和提升SVM分类器性能;最后将提取的感兴趣区域图像的HOG-MBLBP特征送入训练好的SVM多分类器,进行进一步的精确检测和定位,剔除误检区域。在自建的中国交通标识样本库上进行了实验,结果表明所提方法能达到99.2%的分类准确度,混淆矩阵结果也表明了该方法的优越性。The imbalance between sample categories in traffic sign detection often results in the weakening of classification detection performance. To overcome this problem, a traffic sign detection method is proposed based on regions of interest and Histogram of Oriented Gradient and Multi-radius Block Local Binary Pattern(HOG-MBLBP) features. First, the color enhancement technology is used to segment and extract the regions of interest of the traffic signs captured in the natural background. Then HOG-MBLBP fusion features are extracted from traffic signs sample library. Moreover, genetic algorithm is used to optimize the parameters of Support Vector Machine(SVM) through cross-validation so as to train and promote SVM classifier performance. Finally, extracted HOG-MBLBP features of interest region images are put into the trained SVM multi-classifiers for further accurate detection and localization. By this method, the paper achieves the purpose of excluding false positives area. The experiments are carried out on the self-built Chinese traffic sign sample library, experimental results show that the proposed method can achieve 99.2% of classification accuracy, and the confusion matrix results also show the superiority of the proposed method.
关 键 词:交通标识检测 感兴趣区域 HOG描述子 LBP描述子 支持向量机(SVM)
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70