检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石鲁珍[1] 张景川[2] 王彦群[1] 施明登[1,3]
机构地区:[1]塔里木大学信息工程学院,新疆阿拉尔843300 [2]塔里木大学机械电气化工程学院,新疆阿拉尔843300 [3]新疆南疆农业信息化研究中心,新疆阿拉尔843300
出 处:《中国农机化学报》2016年第6期99-103,共5页Journal of Chinese Agricultural Mechanization
基 金:塔里木大学校长基金硕士项目(TDZKSS201413);国家自然基金项目(61362026)
摘 要:以新疆南疆灰枣为研究对象,采用马氏距离法对近红外校正集中异常光谱样品进行剔除,并运用浓度残差法对异常化学值样品进行剔除,从校正集中的100个红枣样品剔除了1个异常光谱样品和23个异常化学值样品,用剩下的76个样品建立红枣水分校正模型,并对预测集的51个红枣样品进行预测分析,用预测相关系数(RP)、预测标准偏差(SEP)、平均相对误差(Er)来作为评价指标。结果表明:RP为0.9258,RMSEP为1.6197,Er为0.0333,与剔除前校正集所建模型相比,模型的稳定性和预测精度得到显著的提高。With Hui jujube in Southern region of Xinjiang as research object,outerlier samples often strongly influence the stability of the model in near-infrared(NIR)spectrum.By using the method of mahalanob distance,1outliers were detected and eliminated,and concentration residual method was employed to detect and eliminate 23 outliers chemical value sample from the calibration set of 100 jujube samples.With the remaining 76 samples to establish a calibration model of red dates moisture,prediction and analysis of 51 samples of red dates of the prediction set.The results showed the predicted correlation coefficients(RP)of the predicted set were0.9258;the standard error of validation(SEP)of the prediction were 1.6197;the average relative error of the prediction were 0.0333.Compared to the original calibration model the predicted accuracy and stability of this model were greatly improved.
分 类 号:S23-0[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28