面向生产调度的订货量分配问题研究  被引量:7

Research on Production Scheduling Oriented Order Quantity Allocation Problem

在线阅读下载全文

作  者:李占丞 刘晓冰[1] 薄洪光[1] 

机构地区:[1]大连理工大学管理与经济学部,辽宁大连116023

出  处:《工业工程与管理》2016年第2期32-40,共9页Industrial Engineering and Management

基  金:国家科技支撑计划资助项目(2015BAF08B02)

摘  要:为研究多品种批量制造环境下由于供应商交货数量不确定造成物料不齐套进而导致生产计划不可行的问题,以多个供应商和单个制造商组成的二级供应链为背景,提出面向生产过程的供应商选择与订货量分配模型。以包含订货、采购、库存以及拖期惩罚成本的期望总成本最小化为目标,在传统供应商能力限制、订货数量区间要求以及产品生产调度约束的基础上,考虑允许供应商延期交货且拖期时间依赖供应商可靠度的情形,建立了相应的混合整数随机规划模型。针对所研究问题的复杂性及模型特点,采用基于局部搜索和变异机制的改进离散粒子群优化算法对模型进行求解,结合具体交货情景下的工程实例对模型可行性进行了验证,通过与其他方法进行比较,表明所提算法的有效性。Based on a two-stage supply chain of multiple suppliers and a single manufacturer, the problem that the production plan became infeasible due to part of the materials shortage, which resulted from the uncertain delivery quantities of suppliers in the multi-product and batch production environment was researched and a supplier selection and order quantity allocation model oriented to production process was proposed. On the basis of traditional consideration of suppliers~ capacity,order quantity interval and production scheduling limitations, suppliers ~ reliability dependent delay time was incorporated in the mixed integer stochastic programming model with the objective of minimizing the expected total cost, including ordering, procurement, inventory holding and the delay penalty cost. Aiming at the complexity and the characteristic of the problem, a discrete particle swarm optimization algorithm combined with local search and mutation operation was presented to solve this model. Through a specific delivery scenario, the reasonableness of the model is verified. Compared with the standard particle swarm optimization and other algorithms, the results showed that the proposed method could effectively solve the model.

关 键 词:供应不确定 订货量分配 生产调度 粒子群优化算法 情景分析 

分 类 号:F274[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象