川芎药材的近红外多指标快速质量评价  被引量:19

Rapid quality evaluation of Chuanxiong Rhizoma with multi-indicators by near infrared spectroscopy

在线阅读下载全文

作  者:陈佳乐[1] 金叶[1] 陈红英 刘雪松[1] 刘志刚 李琼娅 栾连军[1] 

机构地区:[1]浙江大学药学院,浙江杭州310058 [2]华润三九医药股份有限公司,广东深圳518110

出  处:《中草药》2016年第6期1004-1009,共6页Chinese Traditional and Herbal Drugs

基  金:科技部重大新药创制项目(2013ZX09201022)

摘  要:目的采用近红外光谱(near infrared spectroscopy,NIRS)技术对川芎药材进行快速质量评价,建立药材中阿魏酸、水分和浸出物量的定量模型,提高川芎药材的质量控制水平。方法以HPLC法、减压干燥法和热浸法作为参比分析方法,分别测定川芎中阿魏酸、水分和浸出物量,运用偏最小二乘(PLS)法建立阿魏酸、水分和浸出物量之间的定量校正模型,并对川芎未知样本中各指标的量进行预测。结果川芎中3个质控指标模型的相关系数(R)分别为0.913 0、0.905 9和0.954 4,未知样本预测误差均方根(RMSEP)分别为0.000 3、0.305 6和2.209 0,相对预测偏差(RSEP)均小于10%,NIRS模型预测效果良好。结论研究结果表明NIRS分析技术可实现川芎药材中阿魏酸、水分及浸出物3个关键质控指标的快速检测,结果准确可靠。Objective Near infrared spectroscopy (NIRS) method was used for rapid quality evaluation of Chuanxiong Rhizoma. Quantitative models of ferulic acid content, moisture content, and extractum content were established to improve the quality control of Chuanxiong Rhizoma. Methods The contents of ferulic acid, moisture, and extracttma were determined by high performance liquid chromatography, vacuum drying, and hot dipping methods, respectively. Partial least squares regression (PLSR) models were developed for the quantitative analysis on the contents of ferulic acid, moisture, and extractum. The contents of validation samples were predicted by established NIRS models. Results The correlation coefficients (r) of the three models were 0.913 0, 0.905 9 and 0.954 4, respectively. The root mean square errors of prediction (RMSEP) were 0.000 3, 0.305 6, and 2.209 0, respectively. The relative standard errors (RSEP) were less than 10%, indicating satisfactory predicted results. Conclusion The results demonstrate that NIRS method could be applied for the rapid determination to the contents of ferulic acid, moisture and extractum in Chuanxiong Rhizoma.

关 键 词:川芎 阿魏酸 质量评价 近红外光谱 偏最小二乘法 

分 类 号:R286.01[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象