检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学经济与管理学院,西安710054
出 处:《计算机工程与应用》2016年第10期64-70,共7页Computer Engineering and Applications
基 金:陕西省重点学科建设专项资金项目(No.107-00X901);陕西省教育厅专项科研计划项目(No.14JK1522)
摘 要:针对数据挖掘方法在电信客户流失预测中的局限性,提出将信息融合与数据挖掘相结合,分别从数据层、特征层、决策层构建客户流失预测模型。确定客户流失预测指标;根据客户样本在特征空间分布的差异性对客户进行划分,得到不同特征的客户群;不同客户群采用不同算法构建客户流失预测模型,再通过人工蚁群算法求得模型融合权重,将各模型的预测结果加权得到预测最终结果。实验结果表明,基于信息融合的客户流失预测模型确实比传统模型更优。Concerning the limitations of data mining methods in telecom customer churn prediction, a combination of information fusion and data mining technology is proposed by establishing customer churn prediction model on data level,feature level and decision-making level. Firstly, the customer churn predictors are determined. Secondly, customers are divided into groups with different features according to their differences in the feature space distribution. Lastly, customer churn prediction results of each group are obtained by weighted the predictions of different models which are established by using different methods, and the weight of each model is obtained through artificial ant colony algorithm. The experimental results show that the performance of customer churn prediction model based on information fusion is better than the traditional model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117