检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2016年第10期151-156,共6页Computer Engineering and Applications
摘 要:通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。By introducing between-class scatter constraint and label information into two-dimensional locality preserving projections(2D-LPP) algorithm, two-Dimensional Discriminant Locality Preserving Projections(2D-DLPP) has more discriminant power than 2D-LPP. However, 2D-DLPP is confronted with the difficulty of parameter selection, which limits its power on solving recognition problem. To solve this problem, by constructing parameter-less affinity matrix, an algorithm called parameter-less two-dimensional discriminant locality preserving projections(parameter-less 2D-DLPP)is proposed.The simulation results on Yale and ORL face database show that the method in this paper can get higher recognition rate than 2D-DLPP, 2D-LPP and 2D-LDA.
关 键 词:人脸识别 特征提取 二维判别局部保持投影 无参数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229