检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国网四川省电力公司技能培训中心,成都611133
出 处:《大电机技术》2016年第3期58-61,64,共5页Large Electric Machine and Hydraulic Turbine
摘 要:大力开发水电资源是解决我国能源供应紧张问题的重要途径。水轮机辨识多采用基于线性系统辨识理论的算法,由于缺乏对水轮机非线性因素的考虑,很难满足电力系统实际运行状况分析的需要。智能优化算法是水轮机辨识的最优斱法,本文将差分进化算法和粒子群算法成功应用于水轮机辨识中,幵针对智能优化算法存在的原理误差,提出将两种算法辨识得到的平均值作为辨识结果。仿真结果显示该策略辨识出的系统参数精确度高,误差小。Developing hydro power resources vigorously is an important way to solve China's energy supply tension. The algorithm based on the theory of linear system identification for the most part is adopted to identify hydraulic turbine. Due to lacking of consideration of nonlinear factors of hydro-turbine, it is difficult to meet the actual operation of the electric power system analysis. Intelligent optimization algorithm is a preferred method of identification turbine. In this paper, the differential evolution and the particle swarm optimization are applied to the hydro-turbine identification. According to the error in principle existing in intelligent optimization algorithms, the method that the average value of two algorithms as the identification results presented, the simulation results show that the transfer function identify from this strategy is precise, and less system error.
关 键 词:粒子群算法 差分进化算法 水轮机调速系统 参数辨识 非线性系统
分 类 号:TK730.41[交通运输工程—轮机工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117