Methylprednisolone microsphere sustained-release membrane inhibits scar formation at the site of peripheral nerve lesion  被引量:5

Methylprednisolone microsphere sustained-release membrane inhibits scar formation at the site of peripheral nerve lesion

在线阅读下载全文

作  者:Qiang Li Teng Li Xiang-chang Cao De-qing Luo Ke-jian Lian 

机构地区:[1]The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian Province, China

出  处:《Neural Regeneration Research》2016年第5期835-841,共7页中国神经再生研究(英文版)

基  金:supported by the Technology Fund of Zhangzhou City in China,No.Z2010086

摘  要:Corticosteroids are widely used for the treatment of acute central nervous system injury. However, their bioactivity is limited by their short half-life. Sustained release of glucocorticoids can prolong their efficacy and inhibit scar formation at the site of nerve injury. In the present study, we wrapped the anastomotic ends of the rat sciatic nerve with a methylprednisolone sustained-release membrane. Compared with methylprednisone alone or methylprednisone microspheres, the methylprednisolone microsphere sustained-release membrane reduced tissue adhesion and inhibited scar tissue formation at the site of anastomosis. It also increased sciatic nerve function index and the thickness of the myelin sheath. Our findings show that the methylprednisolone microsphere sustained-release membrane effectively inhibits scar formation at the site of anastomosis of the peripheral nerve, thereby promoting nerve regeneration.Corticosteroids are widely used for the treatment of acute central nervous system injury. However, their bioactivity is limited by their short half-life. Sustained release of glucocorticoids can prolong their efficacy and inhibit scar formation at the site of nerve injury. In the present study, we wrapped the anastomotic ends of the rat sciatic nerve with a methylprednisolone sustained-release membrane. Compared with methylprednisone alone or methylprednisone microspheres, the methylprednisolone microsphere sustained-release membrane reduced tissue adhesion and inhibited scar tissue formation at the site of anastomosis. It also increased sciatic nerve function index and the thickness of the myelin sheath. Our findings show that the methylprednisolone microsphere sustained-release membrane effectively inhibits scar formation at the site of anastomosis of the peripheral nerve, thereby promoting nerve regeneration.

关 键 词:nerve regeneration peripheral nerve injury nanometer SCAR methylprenisolone sustained-release membrane biological agents peripheral nerve neural regeneration 

分 类 号:R745[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象