检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023
出 处:《计算机科学》2016年第4期41-44,共4页Computer Science
基 金:国家自然科学基金项目(61473263)资助
摘 要:水波优化(Water Wave Optimization,WWO)算法是一种受浅水波现象启发的新兴进化算法,它通过模拟水波的传播、折射、碎浪等运动机制来在高维解空间中进行高效搜索。该算法已被证明在大量基准测试问题和工程实际问题上优于其它许多前沿的启发式优化算法。从理论上分析了WWO算法的收敛性条件。通过对目标问题和算法参数设置的简化,证明了WWO中任何个体在两种特殊情况下都是收敛的:(1)只执行传播操作;(2)只执行折射操作。这两种情况分别对应两种特殊的适应度变化状态。进行了数值仿真实验,验证了上述两种收敛性条件。Taking inspiration from the phenomena of water waves tor global optxmlzatxon, water wave opumzntlu (WWO) is a novel evolutionary algorithm which mimics wave motions including propagation, refraction and breaking for effectively searching in a high-dimensional solution space, which has shown promising performance advantage over a variety of state-of-the-art metaheuristic optimization methods on well-known benchmark problems and real-world engi- neering problems. The paper theoretically analyzed the convergence conditions of the WWO algorithm. By simplifying the target problem and the parameter setting of the algorithm, we demonstrated that in WWO any individual can guaran- tee the convergence in two special cases: 1) when only performing the propagation operation and 2) when only perfor- ming the refraction operation, which respectively happen under two special states of fitness changing. The paper also conducted numerical simulations for the two special cases respectively to validate the above convergence conditions.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249