n次微分分次Poisson代数的泛包络代数  

The universal enveloping algebras of n-differential graded Poisson algebras

在线阅读下载全文

作  者:朱卉[1] 吴学超[1] 陈淼森[1] 

机构地区:[1]浙江师范大学数学系,浙江金华321004

出  处:《浙江大学学报(理学版)》2016年第3期253-256,263,共5页Journal of Zhejiang University(Science Edition)

摘  要:给出了n次微分分次Poisson代数的泛包络代数的定义及相关性质,同时给出了它的应用,即e是n次微分Z-分次Poisson代数范畴到微分Z-分次代数范畴的一个共变函子和(A^e)^(op)=(A^(op))~e,其中A是任意的n次微分分次Poisson代数.In order to study more extensively about Poisson algebras,this paper presents the definition and some properties of universal enveloping algebras of n-differential graded Poisson algebras and proves that universal enveloping algebras of n-differential graded Poisson algebras are differential graded algebras.During the study of the universal enveloping algebras of n-differential graded Poisson algebras,we find many interesting results.As applications,we prove that eis a covariant functor from the category of n-differential Z-graded Poisson algebras to the category of differential Z-graded algebras and(A^e)^op=(A^op)^e,for any n-differential graded Poisson algebras A.

关 键 词:分次Poisson代数 泛包络代数 微分分次代数映射 微分分次李代数映射 共变函子 

分 类 号:O154.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象