检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛农业大学理学与信息科学学院,山东青岛266109 [2]青岛出入境检验检疫局,山东青岛266001
出 处:《河南农业科学》2016年第6期157-160,共4页Journal of Henan Agricultural Sciences
基 金:国家自然科学基金项目(31201133);青岛市科技发展计划项目(14-2-3-52-nsh);青岛市民生计划项目(13-1-3-107-nsh)
摘 要:为实现通过自动化手段进行花生品种真伪的鉴定,通过扫描仪采集了花生荚果侧面的图像,花生共20个品种,每个品种50个花生荚果,对采集的每幅图像提取形态、颜色、纹理方面的50个特征,首先通过主分量分析(PCA)对这些特征进行组合优化,然后采用RBF核函数搭建了支持向量机模型,最后通过网格搜索法、基因算法和粒子群方法优化支持向量机模型的惩罚参数c与gamma参数。优化结果表明,在主成分累积贡献率为95%时,PCA是10个主分量,3种参数优化方案中20个品种的5折交叉验证识别率分别为78.6%、77.6%、78.0%,识别效果相当,花生品种真伪的二分类识别率最高达到95%。优化后该模型对品种真伪的识别已经基本可以推广到实际生产中使用。Abstract : In order to realize the identification of peanut varieties automatically, using scanner wecollected the si(ie images of peanut pods. Here were 20 varieties and each variety had 50 pods. For eachimage we extracted 50 characters of shape, color, and texture. First by principal component analysis (PCA ) we did the combinatorial optimization on these characteristics, then using the R B Fbuilt a recognition model based on support vector machine, and finally, usingthe grid search, geneticalgorithm and particle swarm methods optimized the penalty parameter C and gamma parameters of thesupport vector machine model. Optimization results showed that, when the principal component percentage was 95% , the number of principal components was 10. By the three parameter optimization methods, the recognition rates of five-fold cross validation were 78. 6% , 77. 6% , 78. 0% separately for 20 varieties. If there were only 2 kinds of peanut cultivars, the highest classification recognition method of identifying the authenticity of peanut varieties can be used in actual production.
分 类 号:S126[农业科学—农业基础科学] S565.2
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222