Up-regulation of Long Non-coding RNA TUG1 in Hibernating Thirteen-lined Ground Squirrels  被引量:1

Up-regulation of Long Non-coding RNA TUG1 in Hibernating Thirteen-lined Ground Squirrels

在线阅读下载全文

作  者:Jacques J.Frigault Daneck Lang-Ouellette Pier Morin Jr. 

机构地区:[1]Department of Chemistry and Biochemistry, Faculty of Sciences, Universite'de Moncton

出  处:《Genomics, Proteomics & Bioinformatics》2016年第2期113-118,共6页基因组蛋白质组与生物信息学报(英文版)

基  金:supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN/402222-2012) awarded to PJM

摘  要:Mammalian hibernation is associated with multiple physiological, biochemical, and molecular changes that allow animals to endure colder temperatures. We hypothesize that long non-coding RNAs(lnc RNAs), a group of non-coding transcripts with diverse functions, are differentially expressed during hibernation. In this study, expression levels of lncRNAs H19 and TUG1 were assessed via qRT-PCR in liver, heart, and skeletal muscle tissues of the hibernating thirteen-lined ground squirrels(Ictidomys tridecemlineatus). TUG1 transcript levels were significantly elevated 1.94-fold in skeletal muscle of hibernating animals when compared with euthermic animals. Furthermore, transcript levels of HSF2 also increased 2.44-fold in the skeletal muscle in hibernating animals. HSF2 encodes a transcription factor that can be negatively regulated by TUG1 levels and that influences heat shock protein expression. Thus, these observations support the differential expression of the TUG1-HSF2 axis during hibernation. To our knowledge, this study provides the first evidence for differential expression of lnc RNAs in torpid ground squirrels, adding lnc RNAs as another group of transcripts modulated in this mammalian species during hibernation.Mammalian hibernation is associated with multiple physiological, biochemical, and molecular changes that allow animals to endure colder temperatures. We hypothesize that long non-coding RNAs(lnc RNAs), a group of non-coding transcripts with diverse functions, are differentially expressed during hibernation. In this study, expression levels of lncRNAs H19 and TUG1 were assessed via qRT-PCR in liver, heart, and skeletal muscle tissues of the hibernating thirteen-lined ground squirrels(Ictidomys tridecemlineatus). TUG1 transcript levels were significantly elevated 1.94-fold in skeletal muscle of hibernating animals when compared with euthermic animals. Furthermore, transcript levels of HSF2 also increased 2.44-fold in the skeletal muscle in hibernating animals. HSF2 encodes a transcription factor that can be negatively regulated by TUG1 levels and that influences heat shock protein expression. Thus, these observations support the differential expression of the TUG1-HSF2 axis during hibernation. To our knowledge, this study provides the first evidence for differential expression of lnc RNAs in torpid ground squirrels, adding lnc RNAs as another group of transcripts modulated in this mammalian species during hibernation.

关 键 词:HIBERNATION HYPOMETABOLISM Cold adaptation Non-codiag RNAs lncRNAs 

分 类 号:Q953[生物学—动物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象