检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学光电学院,北京100081 [2]北京理工大学计算机学院,北京100081
出 处:《计算机应用》2016年第6期1682-1687,共6页journal of Computer Applications
基 金:国家863计划项目(2013AA013802);国家自然科学基金资助项目(61271375)~~
摘 要:针对局部聚合描述符向量(VLAD)模型中对特征软量化时权重系数的取值不确定性和特征量化误差较大问题,提出一种具有最小重构误差的权重系数分配算法.该算法以最小化重构误差为标准,将具有最小化重构误差的稀疏编码的编码系数作为软量化VLAD的权重系数.数据库的图像检索测试结果表明,该算法相比主流的VLAD特征编码算法所得图像检索精度可提高10%左右,且有更小的特征重构误差.Aiming at the uncertainty value of weight coefficient and the big error of characteristic quantification in soft assignment of characteristics quantification in Vector of Locally Aggregated Descriptor( VLAD) model, an efficient weight coefficient soft quantization assignment algorithm based on minimized reconstruction error was proposed. The sparse coding coefficients with the minimized reconstruction errors were taken as the weighting values of soft quantization assignment based on VLAD by taking the minimized reconstruction error as the standard. The image retrieval test results of database show that,compared with the mainstream VLAD feature coding algorithms, the image retrieval accuracy of the proposed algorithm can be improved about 10%, and the proposed algorithm can obtain a smaller feature reconstruction error.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28