检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院电子与光学工程系,石家庄050003 [2]军械工程学院信息工程系,石家庄050003
出 处:《计算机应用》2016年第A01期5-8,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(61173191)
摘 要:对协议未知条件下比特流数据集的聚类是进一步开展未知协议识别的基础。从比特流的统计特征出发,提出了三种协议不相关的比特流特征参数:压缩率、汉明重和游程频数。针对k-means算法对初始聚类中心的敏感问题,提出了一种基于距离累加和的初始聚类中心选择方法,并采用k-均值算法对实际采集的比特流数据集进行了聚类。实验结果表明,所定义的特征参数可有效用于未知协议比特流聚类,提出的初始聚类中心选择方法可以提高k-均值算法的稳定性和执行效率。Unknown protocol bitstream clustering is the foundation of further protocol identification.From a statistical point of view,three bitstream characteristic parameters not related to protocol,including compression ratio,Hamming weight and runs frequency,were put forward.To address the sensitive issue of k-means algorithm about the initial clustering centers,an initial clustering center selection method based on distance accumulation was proposed.And the bitstream data sets collected from the real network environment were clustered based on k-means algorithm.Experimental results demonstrate that the defined parameters can be effectively used to the process of unknown protocol bitstream clustering,and the proposed initial clustering centers selection method can improve the stability and execution performance of k-means algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38