检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2016年第13期89-94,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.60835004);湖南省教育厅重点项目(No.14A137);湖南省重点学科资助项目
摘 要:流数据环境下如何利用大量非标记样本进行高效学习是一个非常重要的问题,基于分歧策略的主动学习是一种有效的解决方法,但通常该类算法只考虑具有最大分歧的边界样本,没有考虑训练前期对分歧度小的样本误判后的样本矫正问题,为此,提出一种基于分歧度评价的融合主动学习和集成学习的高效能学习方法。该方法基于样本分歧度和不同的训练阶段,采取不同的非标记样本选取方式。为评价方法性能,在人工流数据和HEp-2细胞图像数据上进行了实验,结果表明该方法相对于目前的Qboost方法,需要的训练样本数少且具有更高的分类精度。It is very important to use a large amount of unlabeled samples for efficient learning in date stream environment.The Active Learning based on the disagreement strategy is an effective solution, but usually, the algorithm only considersthe largest boundary sample, and neglects the possibility of misjudging of the minimum divergence samples in theearlier stage of training. To achieve the label revision of misjudged samples, a highly efficient learning method integratedwith active learning and ensemble learning that based on divergence is proposed. Based on the sample divergence andtraining stages, different selection strategies for unlabeled sample are adopted by this method. To evaluate the effectivenessof the proposed method, experiments are made on the artificial stream date and HEP-2 cell image. Experimental resultsshow that this method needs less training samples and provides a higher classification precision over the existing Qboost.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249