基于改进数学形态学与S变换的暂态电能质量扰动检测  被引量:4

Power Quality Transient Disturbance Detection Based on Improved Mathematical Morphology and S-transform

在线阅读下载全文

作  者:王慧慧[1,2] 王萍[1] 杨挺[1] 

机构地区:[1]天津大学电气与自动化工程学院,天津300072 [2]天津城建大学控制与机械工程学院,天津300384

出  处:《天津大学学报(自然科学与工程技术版)》2016年第6期631-638,共8页Journal of Tianjin University:Science and Technology

基  金:国际科技合作专项资助项目(2013DFA11040);国家自然科学基金资助项目(61172014);天津市自然科学基金重点资助项目(12JCZDJC21300)

摘  要:针对电能质量扰动信号检测受噪声影响大且特征值定位不准确的问题,提出一种改进数学形态学方法对电能质量扰动信号中存在的噪声干扰进行预处理,并选取S变换频谱标准差、S模矩阵时间幅值平方和均值以及S模矩阵等高线这3种时频域的特征值,实现了6种单一扰动信号和2种复合扰动信号的检测和定位.仿真结果表明,与传统的数学形态学滤波和卡尔曼滤波方法相比,改进的数学形态学方法去噪效果好,而且可以加强原信号中的有用信号,S变换中选取的特征值从时域和频域共同体现扰动特征,使电能质量扰动信号的检测定位更加准确.In the traditional method,the detection of power quality disturbance signals is easily affected by thenoise and it is difficult to locate the feature value accurately. To solve these problems,an improved mathematical morphol-ogy was presented in this paper which can pre-process the noise that exists in power quality disturbance signals. The S-transform spectral standard deviation,the time squared amplitude and mean in S-matrix modulus and the contour of S-matrix modulus were selected as feature values in time and frequency domain. Six types of single disturbance and two types of complex disturbance were detected and located. Compared with traditional mathematical morphology and Kalman filtering,it is found that the improved mathematical morphology can eliminate the noise effectivelyand strengthen the useful signal. The disturbance characteristics in time and frequency domain can be reflected by the se-lected features of S-transform,which makes the detection and localization results of power quality disturbance signal more accurate.

关 键 词:电能质量扰动 S变换 改进数学形态学 特征值提取 检测和定位 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象