Analysis of cytosine methylation in early generations of resynthesized Brassica napus  被引量:8

Analysis of cytosine methylation in early generations of resynthesized Brassica napus

在线阅读下载全文

作  者:RAN Li-ping FANG Ting-ting RONG Hao JIANG Jin-jin FANG Yu-jie WANG You-ping 

机构地区:[1]Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University

出  处:《Journal of Integrative Agriculture》2016年第6期1228-1238,共11页农业科学学报(英文版)

基  金:supported by the National Key Basic Research Program of China (2015CB150201);the National Natural Science Foundation of China (NSFC, 31330057, 31401414);the Priority Academic Program Development of Jiangsu Higher Education Institutions of China;the Jiangsu Province Science Foundation, China (BK20140478, 14KJB210008);the Jiangsu Province Graduate Inno vation Fund, China (KYZZ15_0367)

摘  要:DNA methylation, an important epigenetic modification, serves as a key function in the polyploidization of numerous crops. In this study, early generations of resynthesized Brassica napus (F1,S1-S3), ancestral parents B. rapa and B. oleracea were analyzed to characterize their DNA methylation status during polyploidization, applying DNA methylation-sensitive amplifica- tion polymorphism (MSAP) and high-performance liquid chromatography methods. In F, 53.4% fragments were inherited from both A- and C-genomes. Besides, 5.04 and 8.87% fragments in F were inherited from A- and C- genome, respectively. 5.85 and 0.8% fragments were newly appeared and disappeared in resynthesized B. napus, respectively. 13.1% of these gene sites were identified with methylation changes in F, namely, hypermethylation (7.86%) and hypomethylation (5.24%). The lowest methylation status was detected in F (38.7%) compared with in S1-S3. In S3, 40.32% genes were methylated according to MSAP analysis. Sequencing of methylated fragments indicated that genes involved in multiple biological processes were modified, including transcription factors, protein modification, and transporters. Expression ananlysis of DNA methyltransferase I and DNA methyltransferase chromomethylase 3 in different materials was consistent to the DNA methylation status. These results can generally facilitate dissection of how DNA methylation contributes to genetic stability and improvement of B. napus during polypLoidization.DNA methylation, an important epigenetic modification, serves as a key function in the polyploidization of numerous crops. In this study, early generations of resynthesized Brassica napus (F1,S1-S3), ancestral parents B. rapa and B. oleracea were analyzed to characterize their DNA methylation status during polyploidization, applying DNA methylation-sensitive amplifica- tion polymorphism (MSAP) and high-performance liquid chromatography methods. In F, 53.4% fragments were inherited from both A- and C-genomes. Besides, 5.04 and 8.87% fragments in F were inherited from A- and C- genome, respectively. 5.85 and 0.8% fragments were newly appeared and disappeared in resynthesized B. napus, respectively. 13.1% of these gene sites were identified with methylation changes in F, namely, hypermethylation (7.86%) and hypomethylation (5.24%). The lowest methylation status was detected in F (38.7%) compared with in S1-S3. In S3, 40.32% genes were methylated according to MSAP analysis. Sequencing of methylated fragments indicated that genes involved in multiple biological processes were modified, including transcription factors, protein modification, and transporters. Expression ananlysis of DNA methyltransferase I and DNA methyltransferase chromomethylase 3 in different materials was consistent to the DNA methylation status. These results can generally facilitate dissection of how DNA methylation contributes to genetic stability and improvement of B. napus during polypLoidization.

关 键 词:resynthesized Brassica napus DNA methylation EPIGENETICS POLYPLOIDIZATION 

分 类 号:S565.4[农业科学—作物学] TQ049[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象