检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学机械科学与工程学院,吉林长春130022
出 处:《长安大学学报(自然科学版)》2016年第3期118-126,共9页Journal of Chang’an University(Natural Science Edition)
摘 要:为了确定关于对称点对点式桁架臂弦杆单肢屈曲载荷的快速可靠的计算方法,对其结构进行力学简化,建立了弦杆腹杆相互作用的空间力学模型,根据梁柱理论得到弦杆的稳定方程,并求解得到了弦杆单肢的屈曲载荷和变形平面。研究结果表明:与有限元计算结果进行对比,验证了力学模型和推导过程的正确性;与单独考虑某个平面腹杆计算得到的屈曲载荷相比较,提出了将单独考虑较弱平面腹杆计算得到的屈曲载荷近似作为弦杆单肢的屈曲载荷;对这种近似计算方法的稳定方程进行化简,确定了利用求解超越方程来计算弦杆单肢长度系数的方法;该计算方法为对称点对点式桁架臂弦杆的屈曲载荷提供了理论依据,可用于工程实际应用。In order to obtain the quick and reliable method to compute the buckling load of the chord,the symmetric point to point truss structure was reasonably simplified,and a spatial mechanical model involving the interaction between chords and web members was established.The stability equation of the chord was derived by using the beam-column theory and was solved to obtain the buckling deformation plane and buckling load of the chord.The results show that the correctnesses of the mechanical model and derivational process are verified by comparing with the results with FEM.By comparison with the buckling load considering web members of only one single plane,the buckling load calculated by using a single plane in which the stiffnesses of web members are weaker,substitutes that of chord.By simplifying stability equation of this approximate calculation method, method by means of solving transcendental equation is established to determine the length factor of chord.Method in this study provides theoretical basis for buckling load of chord form the symmetric point to point truss structure,which can be applied to the practical engineering.3tabs,11 figs,21refs.
关 键 词:机械工程 对称点对点式 桁架臂 弦杆 长度系数 屈曲载荷 梁柱理论 稳定方程
分 类 号:TH213[机械工程—机械制造及自动化] O342[理学—固体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15