检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学计算机科学与技术学院,南京210016
出 处:《数据采集与处理》2016年第3期532-540,共9页Journal of Data Acquisition and Processing
摘 要:有序离散类标号通常由原始连续标号按一定规则映射得到,因此它们彼此间是存在关联信息的,现有有序回归方法对此类关联信息的考虑仍然较少。首先提出一类有序标号间关联度的量化表示,进而将其与典型有序回归方法(Kernel discriminant learning for ordinal regression,KDLOR)相结合,设计出了一种结合类标号关联度的有序核判别回归学习方法(Kernel discriminant learning for ordinal regression using label membership,LM-KDLOR),最后通过在多个标准有序回归数据集上的对比实验验证了所提方法的有效性。Abstract: The ordinal discrete labels are usually obtained from continuous labels, and these regressor sel- dom use the mutual membership information between ordinal discrete labels, which can be further im- proved. Therefore, quantitive representation is characterized for the membership information, and then a kernel diseriminant learning for ordinal regression using label membership (LM-KDLOR) is established by combining the representation with typical off-the-shelf KDLOR. Experimental results with the stand- ard ordinal regression data sets verify the effectiveness of the proposed strategy.
关 键 词:有序回归 核判别学习有序回归 类标签关联度 核方法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28