检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计量学报》2016年第4期406-410,共5页Acta Metrologica Sinica
基 金:国家自然科学基金(51105323);河北省自然科学基金(E2015203356,E2012203166)
摘 要:针对滚动轴承早期微弱故障特征难以提取的问题,提出了改进奇异值分解(SVD)和经验模式分解(EMD)的滚动轴承早期微弱故障特征提取方法。首先用多分辨奇异值分解将信号分成具有不同分辨率的近似和细节信号,然后对近似信号用奇异值差分谱进行消噪,对消噪后的信号进行经验模态分解,将得到的各本征模函数分量进行希尔伯特包络解调,从而获得滚动轴承故障特征信息,最后通过对滚动轴承早期内圈故障的诊断实验证明了该方法的有效性。To extract fault characteristics from the original signal is hard. For this reason, a novel integrated of incipient fault diagnosis method is presented based on the principle of the improved singular value decomposition(SVD) and empirical mode decomposition(EMD). Firstly, based on multi-resolution singular value decomposition, the original signal is decomposed into approximation and detail signals with different resolution. Then the noise in approximation signal is eliminated by using difference spectrum of singular value. The signal after de-noising is decomposed by EMD and a group of Intrinsic Mode Functions (IMF) is obtained. The IMFs were demodulated with Hilbert transform, and envelope spectrum at each band was obtained, through these procedures the faint feature information can be extracted. The effectiveness of this method is confirmed by the experiment of rolling bearing inner race incipient fault.
关 键 词:计量学 故障特征提取 多分辨奇异值 经验模式分解 轴承故障诊断
分 类 号:TB936[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227