检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《宁波大学学报(理工版)》2016年第3期13-18,共6页Journal of Ningbo University:Natural Science and Engineering Edition
基 金:国家自然科学基金(11101230;11371209);浙江省自然科学基金(LY13A010013)
摘 要:空间Bézier曲线的挠率在几何造型中被广泛应用.文中利用笛卡尔符号法则讨论了两种特殊三次空间Bézier曲线的挠率单调性问题,最后得出当空间三次Bézier曲线的控制边相等且中间控制边和相邻两控制边的夹角相等时,挠率仅有一个极小值;而当两夹角相等但控制边长成等差数列时,文中给出了挠率单调及极值存在的充分条件.The torsion of the spatial Bézier curve is widely used in geometrical modelling. In this paper, we mainly discuss the torsion monotonicity problem of two special cubic Bézier curves by use of Descartes’ rule of signs. Based on the study, it is concluded that when the control sides are of equal length and the angles between two adjacent control sides are equal, the only minimum of torsion is always available; and in the case that the two angles are equal while the control side lengths are in arithmetic progression, the sufficient conditions can be determined for the torsion monotony and the existence of extremum.
关 键 词:三次空间Bézier曲线 笛卡尔符号法则 挠率 单调
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15