检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢承旺[1,2] 许雷[1] 赵怀瑞[3] 夏学文[1] 魏波[1]
机构地区:[1]华东交通大学软件学院,江西南昌330013 [2]江西科技师范大学数学与计算机学院,江西南昌330013 [3]华东交通大学轨道交通学院,江西南昌330013
出 处:《电子学报》2016年第5期1180-1188,共9页Acta Electronica Sinica
基 金:国家自然科学基金(No.61165004);江西省自然科学基金(No.20114BAB201025;No.20151BAB207022);江西省教育厅科技项目(No.GJJ12307;No.GJJ14373)
摘 要:现实中的多目标优化问题越来越多,而且日益复杂.受混合多目标优化算法设计思想的启发,将烟花爆炸方法和精英反向学习机制引入至多目标优化领域,提出一种应用精英反向学习的多目标烟花爆炸算法(Multi-Objective Fireworks Optimization Algorithm Using Elite Opposition-Based Learning,MOFAEOL).该算法利用精英反向学习策略加强算法的全局搜索能力,利用烟花爆炸方法增强算法的局部搜索能力并提高求解的精度.这两种搜索机制相互协同以更好地平衡算法的全局勘探和局部开采的能力.MOFAEOL算法与另外5种代表性多目标优化算法一同在由ZDT系列和DTLZ系列组成的测试集上进行性能比较.实验表明,MOFAEOL算法在收敛性、多样性和稳定性方面均优于或部分优于其他对比算法.More and more complex multi-objective optimization problems have emerged in the real world. Inspired by the idea of hybrid components of multi-objective optimization algorithms, a method of fireworks explosion optimization and a strategy of elite opposition-based learning were introduced into the field of multi-objective optimization. A multi-objective fireworks optimization algorithm using elite opposition-based learning (MOFAEOL) was proposed in the paper. The MO- FAEOL utilized the elite opposition-based learning strategy to strengthen the global search ability, and adopted the fireworks explosion optimization approach to improve the local search ability and the accuracy of the algorithm. These two learning mechanisms collaborated to balance the global exploration and the local exploitation, in order to solve some hard multi-objec- tive optimization problems efficiently. The MOFAEOL was compared with other five typical multi-objective optimization al- gorithms on a benchmark test set including 12 multi-objective optimization test problems composed by ZDT and DTLZ series functions. Experimental results show that the MOFAEOL is superior or competitive to the other peer algorithms in conver- gence, diversity and stability.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145