检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:符强[1,2] 汪鹏君[1] 童楠[2] 王铭波 张会红[1]
机构地区:[1]宁波大学电路与系统研究所,浙江宁波315211 [2]宁波大学科学技术学院,浙江宁波315212
出 处:《电子学报》2016年第5期1202-1207,共6页Acta Electronica Sinica
基 金:国家自然科学基金(No.61306041;No.61234002);宁波市自然科学基金(No.2014A610069);浙江省教育厅科研项目(No.Y201326770)
摘 要:针对大规模混合极性Reed-Muller(Mixed Polarity Reed-Muller,MPRM)逻辑电路的延时与面积优化,提出一种基于多策略离散粒子群优化(Multi-Strategy Discrete Particle Swarm Optimization,MSDPSO)的极性搜索方法.在MSDPSO算法中,对粒子进行团队划分,每个团队既执行不同策略,又相互联系,并行完成探索与开发的双重任务.同时在进化过程中采用高斯调整来激活寻优能力较差的粒子.结合MSDPSO算法和列表极性转换技术,对大规模MPRM电路进行延时与面积极性搜索.最后对PLA格式的MCNC Benchmark电路进行算法性能测试,结果验证了MSDPSO算法的有效性.与离散粒子群优化(Discrete Particle Swarm Optimization,DPSO)算法的优化结果相比较,MSDPSO算法获取的电路延时平均缩短8.43%,面积平均节省38.36%.In order to improve the delay and area design of large-scale MPRM circuits, the multi-strategy discrete par- ticle swarm optimization(MSDPSO) is proposed. In MSDPSO, the particles were divided into several teams with different strategy, and each team cooperated with others to promote the exploration and exploitation of the particle population. Meanwhile, the Gaussian adjustment was adopted to activate the worse individuals. Combined with MSDPSO and tabular tech- nique, the best polarity of delay and area was searched for large-scale MPRM circuits. MCNC Benchmarks with PLA format are tested to verify the effectiveness of the MSDPSO, and the results show that MSDPSO has achieved an average saving of 8.46% and 38.73% on delay and area respectively in comparison with the DPSO.
关 键 词:多策略离散粒子群算法 MPRM逻辑电路 延时与面积优化 极性搜索
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185