检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211
出 处:《电子学报》2016年第6期1307-1313,共7页Acta Electronica Sinica
基 金:国家自然科学基金(No.61571247);科技部国际科技合作专项(No.2013DFG12810;No.2012BAF12B11);浙江省国际科技合作专项(No.2013C24027);浙江省自然科学基金(No.LZ16F030001)
摘 要:脸部肌肉之间的时空关系在人脸表情识别中起着重要作用,而当前的模型无法高效地捕获人脸的复杂全局时空关系使其未被广泛应用.为了解决上述问题,本文提出一种基于区间代数贝叶斯网络的人脸表情建模方法,该方法不仅能够捕获脸部的空间关系,也能捕获脸部的复杂时序关系,从而能够更加有效地对人脸表情进行识别.且该方法仅利用基于跟踪的特征且不需要手动标记峰值帧,可提高训练与识别的速度.在标准数据库CK+和MMI上进行实验发现本文方法在识别人脸表情过程中有效提高了准确率.Spatial and temporal relations between different facial muscles are very important in the facial expression recognition process.However,these implicit relations have not been widely used due to the limitation of the current models. In order to make full use of spatial and temporal information,we model the facial expression as a complex activity consisting of different facial events.Furthermore,we introduce a special Bayesian network to capture the temporal relations among fa-cial events and develop the corresponding algorithm for facial expression modeling and recognition.We only use the features based on tracking results and this method does not require the peak frames,which can improve the speed of training and rec-ognition.Experimental results on the benchmark databases CK+and MMI show that the proposed method is feasible in fa-cial expression recognition and considerably improves the recognition accuracy.
关 键 词:表情识别 脸部肌肉运动的时序性 贝叶斯网络 区间代数
分 类 号:TN391.4[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.161