检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾嶒[1] 彭春华[1] 王奎[1] 张艳伟[1] 张明瀚[1]
机构地区:[1]华东交通大学电气与电子工程学院,江西南昌330013
出 处:《电力系统保护与控制》2016年第13期117-122,共6页Power System Protection and Control
摘 要:为了在微电网的运行中寻找到最理想的调度策略,对于微电网的多目标优化问题,采用传统智能算法求解易陷入局部最优而难于找到全局最优解,因此采用一种生物启发式算法——鸟群算法,对以运行成本及环境污染度为目标的微电网多目标优化模型进行求解。该算法模仿鸟群觅食、警觉、迁移的习性,生成对应的种群更新策略,兼具粒子群算法搜索效率高和微分进化算法稳定性好的优点。通过与两者寻优结果比较,表明该算法具有较强的全局、局部搜索能力且收敛鲁棒性好的特点。In order to find the best scheduling strategy in the operation of the micro grid, it is easy to fall into local optimal and difficult to find the global optimal solution by using traditional intelligent algorithm to solve the micro grid optimization problem, thus using a bio-inspired method named Bird Swarm Algorithm to solve a multi-objective optimization model for micro grid taking operation cost and environmental pollution as objectives. The algorithm puts forward the corresponding strategies of population renewal imitating the birds' foraging behavior, vigilance behavior and flight behavior. It has the advantages in high efficiency as Particle Warm Optimization (PSO) and stability as Differential Evolution algorithm (DE). It shows strong global and local search ability and high robustness when compared with PSO and DE.
关 键 词:鸟群算法 粒子群算法 微分进化算法 微电网 多目标优化
分 类 号:TM732[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.36.23