改进BP神经网络在电力手持防误系统的应用  被引量:2

Application of Improved BP Neural Network in the Electric Hand-held Anti-misoperation System

在线阅读下载全文

作  者:任伟建[1] 李昊洋[2] 康朝海[1] 孙辉[3] 

机构地区:[1]东北石油大学电气信息工程学院,黑龙江大庆163318 [2]大庆油田有限责任公司第六采油厂,黑龙江大庆163318 [3]大庆油田有限责任公司天然气分公司,黑龙江大庆163318

出  处:《控制工程》2016年第7期1039-1044,共6页Control Engineering of China

基  金:国家自然科学基金(61374127);黑龙江省博士后科研启动资金(LBH-Q12143)

摘  要:采用C#编程语言,结合WINCE嵌入式技术、条形码扫描技术,开发设计了基于PDA(个人数字助理)平台的电力防误系统。传统条形码扫描是通过光束进行,对易损坏和脏污条形码无法正常扫描识读。开发设计缺损条码识别防误功能模块,在采集缺损条码图片后,进行图像预处理,然后结合神经网络进行识别。进一步地,给出一种新的、基于混沌理论的遗传算法对神经网络进行改进;改进后的神经网络在系统中应用提高了条码识别准确率、加快了识别速度。实际应用表明,该系统能够规范变电所人员的日常工作,减少误操作,提高工作效率。The electric anti-misoperation system based on the platform of PDA (personal digital assistant) is exploited and designed, C# is the main programming language, and the WINCE embedded technology as well as the bar code scanning technology are combined in the exploitation. Traditional bar code scanning is realized by light beam, while the damaged and dirty bar codes can't be scanned and identified normally. The anti-misoperation function module of defective bar code recognition is developed and designed, that the images are preprocessed after the aqcuisition of defective bar code images with the identification using the neural network. Furthermore, a new genetic algorithm based on chaos theory is given to improve the neural network. In the system application, the bar code recognition based on the improved neural network is realized with increased accuracy and faster speed. And it is revealed by the practical application that the system can regulate the personnel daily work in the substation, and decrease misoperation, which improves the working efficiency.

关 键 词:电力防误系统 PDA 条形码 BP神经网络 

分 类 号:TP319[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象