基于组合半监督的增量支持向量机学习算法  被引量:7

Combinatorial Semi-supervised Incremental Support Vector Machine Learning Algorithm

在线阅读下载全文

作  者:郭虎升[1,2] 王文剑[1,2] 潘世超[1] 

机构地区:[1]山西大学计算机与信息技术学院,太原030006 [2]山西大学计算智能与中文信息处理教育部重点实验室,太原030006

出  处:《模式识别与人工智能》2016年第6期504-510,共7页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金项目(No.61503229;61273291);山西省自然科学基金项目(No.2015021096);山西省回国留学人员科研项目(No.2012-008);山西省高等学校科技创新项目(No.2015110)资助~~

摘  要:增量支持向量机(ISVM)由于在每次增量学习过程中无法选择最有效的增量样本,导致模型的泛化性能较差.针对此问题,文中提出基于组合半监督方式的增量支持向量机学习算法(ICS3VM).通过将大量的无标记样本分批进行组合标记以选择最优的增量样本,即每次选择位于分类间隔内部的最有价值样本加入训练集,以此修正模型.同时选择分类间隔最大的一组标记作为最终标记,确保标记的准确性.在标准数据集上的实验表明,ICS3VM能以较高的学习效率提高模型的泛化性能.Incremental support vector machine (ISVM) has difficulty in selecting the best incremental sample during each incremental learning step, and therefore the generalization performance of the model is weak. To solve this problem, combinatorial semi-supervised incremental support vector machine learning algorithm (ICS^3VM) is proposed. The best incremental sample is selected by combinatorial labeling of the large scale unlabeled samples in batches. The most valuable unlabeled samples in the classification margin are added into the training set each time to correct the model. Meanwhile, the label with the largest margin is regarded as the final label to ensure the accuracy. The experiment on the standard datasets shows the good generalization performance and the high learning efficiency of the prooosed ICS^3VM.

关 键 词:支持向量机 组合半监督学习 增量支持向量机(ISVM) 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象