数据质量多种性质的关联关系研究  被引量:35

Association Relationships Study of Multi-Dimensional Data Quality

在线阅读下载全文

作  者:丁小欧 王宏志[1] 张笑影[1] 李建中[1] 高宏[1] 

机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001

出  处:《软件学报》2016年第7期1626-1644,共19页Journal of Software

基  金:国家重点基础研究发展计划(973)(2012CB316200);国家自然科学基金(U1509216;61472099;61133002);黑龙江省留学回国人员基金(LC2016026)~~

摘  要:信息化时代数据海量增长的同时,用户需要利用多种指标从不同性质角度对数据质量进行评价和改善.但在目前数据质量管理过程中,影响数据可用性的多种重要因素并非完全孤立,在评估机制和指导数据清洗规则时,彼此会发生关联.研究了在实际信息系统中适用的综合性数据质量评估方法,将文献所提出以及在实际的信息系统中常用的数据质量性质指标按其定义与性质进行了归纳总结,提出了基于性质的数据质量综合评估框架.之后针对影响数据可用性的4个重要性质:精确性、完整性、一致性以及时效性整理出在数据集合上的操作方法,并逐一介绍其违反模式的定义,随后给出其具体关系证明,进而确定数据质量多维关联关系评估策略,并通过实验验证了该策略的有效性.Recently, with the rapid growth of data quantity, users are using a variety of indicators to evaluate and improve the quality of data from different dimensions. During the course of data quality management, it is found that many important factors that influence the data availability are not completely isolated. In the evaluation mechanism which can guide data cleaning rules, these dimensions may be associated with each other. In this paper, serveral data quality dimensions researched in the literature as well as being used in the real information system are discussed, and accordingly the definition and properties of the dimensions are summarized. In addition, a multi-dimensional data quality assessment framework is proposed. According to the four important properties of data availability: Accuracy, completeness, consistency and currency, the operation method and the relationships among them on the data set are constructed. Finally, a multi-dimensional data quality accessment strategy is created. The effctiveness of the proposed strategy is verified by experiments.

关 键 词:数据质量 数据质量性质 多性质关系 数据清洗 数据管理 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象