检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《南通大学学报(自然科学版)》2016年第2期55-61,共7页Journal of Nantong University(Natural Science Edition)
基 金:国家自然科学基金项目(11426138;11501309);江苏省自然科学基金青年基金项目(Bk20150400)
摘 要:提出了一类基于比率Ivlev功能性反应且食饵有避难所的Leslie捕食-食饵系统.首先分析了常微分系统正平衡点的存在性和局部渐近稳定性,通过建立Dulac函数,得到常微系统正平衡点全局稳定的充分条件;其次,证明了在一定条件下,具有自扩散的偏微分系统会引起Turing不稳定;最后,利用MATLAB软件进行了数值模拟,并作出相应的分析.结果表明,在一定范围内,避难所的大小不改变常微分系统正平衡点的全局渐近稳定性.A ratio-dependent Leslie predator-prey system with Ivlev functional response incorporating a prey refuge was considered. Firstly, the existence and local asymptotic stability of the positive equilibrium of the ODE system were studied. Then, by constructing a suitable Dulac function, sufficient conditions were obtained for the global asymptotic stability of the positive equilibrium of the ODE system. Secondly, the PDE system with self-diffusion could induce the Turing instability in some conditions were proved. Finally, the numerical simulations by using Matlab were given to illustrate the main results and some corresponding discussions were presented. The results showed that, in a certain range, the refuge size has no influence on the global asymptotic stability of the positive equilibrium of the ODE system.
关 键 词:Ivlev-Tanner类功能性反应 食饵避难所 捕食扩散模型 稳定性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.255.182