基于特征增益与多级优化的协同过滤个性化推荐算法  被引量:5

A Recommendation Algorithm Based on Collaborative Filtering by Feature Augmentation and Cascade Tactics

在线阅读下载全文

作  者:马胡双 石永革[1] 高胜保[2] 

机构地区:[1]南昌大学信息工程学院计算机科学与技术系,南昌330038 [2]中国电信股份有限公司江西分公司,南昌330029

出  处:《科学技术与工程》2016年第21期272-277,共6页Science Technology and Engineering

基  金:国家自然科学基金(61163005);江西省科技计划项目(2014ZBBE50008)资助

摘  要:基于混合策略个性化推荐的思想,为进一步提升业务套餐型产品的个性化推荐的准确性,提出了基于特征增益与多级优化的协同过滤推荐算法(FACCF);其中融合了消费数据的时域特征、空域特征、消费倾向以及套餐特征。该算法首先基于客户的时域、空域行为特征,构建了CTAP概率主题模型实现协同过滤;其次,将过滤后的新特征、套餐主题与套餐特征结合进行优化;最后,基于贝叶斯网络对客户群体的消费倾向进行聚类分析,形成二次优化,获得个性化推荐列表。使用电信真实用户数据实证分析的结果表明,FACCF算法能够更准确地预测客户消费意愿。Most personalized recommendation based on user and products, without combined with environmental factors and physical features, so that the algorithm can' t be a good predictor of consumer preferences. This paper presents a mixed strategy of personalized recommendation algorithm FACCF a CTAP ( Customer-Time-Area Pack-age) probabilistic topic model, where the customer behavior fusion domain features, spatial characteristics, pay tendencies and product features; The algorithm is based on the timedomain, area-domain collaborative filtering characteristics of the spatial behavior; after filtration new features, product themes and product features to optimize the combination; later, based on Bayesian network customer groups pay a tendency to cluster analysis, the formation of secondary optimization, get a personalized recommendation list. Use real customer behavior data to conduct empirical analysis results show that the FACCF algorithm show more accurately predict the customer, s consumption, and enhance personalized recommendation accuracy.

关 键 词:业务套餐推荐 协同过滤 特征增益 多级优化 概率主题模型 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象