检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学自动化学院,哈尔滨150080
出 处:《系统科学与数学》2016年第7期995-1005,共11页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学青年基金(61304046)资助课题
摘 要:采用一种新型的Lyapunov-Krasovskii泛函对线性时变时滞Markov跳变系统的稳定性进行研究.提出一种基于交叉项和积分项与标量函数乘积的新型增广LyapunovKrasovskii泛函.该函数中含有更多独立增广变量,有利于减小系统稳定性相对于时滞的保守性.利用二次凸组合、交叉项估计推导出系统随机渐近稳定时滞依赖的充分条件,并进一步求解线性矩阵不等式.数值算例说明所提方法的正确性和有效性.This paper deals with the problem for linear Markovian jump systems with interval time-varying delays, by using a novel Lyapunov-Krasovskii functional. Newly proposed augmented Lyapunov-Krasovskii functional are constructed by the cross-terms of variables and the quadratic terms multiplied by a scalar function. This functional may reduce conservativeness of delay-dependent stability since more independent augmented variables are introduced. A sufficient condition for the stochastic asymptotic stability of the system is derived by applying the ideas of second-order convex combination and the estimation of cross items. The obtained results are formulated in terms of linear matrix inequalities. A numerical example shows the validity and feasibility of the results.
关 键 词:MARKOV跳变系统 线性矩阵不等式 区间时变时滞
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3