检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗化峰[1]
机构地区:[1]山西大同大学煤炭工程学院,山西大同037003
出 处:《洁净煤技术》2016年第4期117-120,131,共5页Clean Coal Technology
基 金:山西省科技攻关(工业)资助项目(20140321003-05);大同市科技攻关资助项目(201316)
摘 要:为满足煤制油工业化过程中设计和操作需要,以H_2在神华煤液化油模型组分混合溶剂中实测溶解度为基础,考察利用人工神经网络法预测H_2在该系统中溶解度的能力。结果表明,神经网络的计算精度随着循环次数的增加而提高;对于不同种类的混合溶剂,随着隐藏层个数的增加,计算值与试验值之间的相对误差呈现逐渐减小的趋势,从减小计算量的角度考虑,选定为4个隐藏层;3-4-1网络结构对于H_2在不同混合溶剂中溶解度的计算值与试验值最大相对误差为4.48%,这表明该模型能够满足H_2在该系统中溶解度的预测需要。In order to meet the requirement of design and operation during coal oil industrialization,the practical H_2 solubility in the mixed solvent of Shenhua coal liquefaction oil was tested first,then the capacity of predicting H_2 solubility in system was investigated by artificial neural network.The results showed that the calculation precision of neural network increased with the increase of cling times. For different mixed solvent,the relative error between calculated value and experimental value gradually decreased with the increase of hidden layer quantity.To reduce calculation amount,the hidden layer quantity were set as four.The maximum relative error of 3-4-1 network for solubility of hydrogen in different mixed solvent was 4.48%.The model could meet the need of predicting solubility of H_2.
关 键 词:溶解度 相平衡 人工神经网络 煤液化油模型组分混合溶剂
分 类 号:TQ529.1[化学工程—煤化学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.4.109