面向内部威胁检测的用户跨域行为模式挖掘  被引量:16

Mining User Cross-Domain Behavior Patterns for Insider Threat Detection

在线阅读下载全文

作  者:文雨[1] 王伟平[1] 孟丹[1] 

机构地区:[1]中国科学院信息工程研究所,北京100093

出  处:《计算机学报》2016年第8期1555-1569,共15页Chinese Journal of Computers

基  金:国家"八六三"高技术研究发展计划项目基金(2013AA013204)资助

摘  要:内部用户行为分析是系统安全领域中一个重要的研究问题.近期的工作主要集中在用户单域行为的单一模式分析技术,同时依赖于领域知识和用户背景,不适用于多检测域场景.文中提出一种新的用户跨域行为模式分析方法.该方法能够分析用户行为的多元模式.此外,该方法是完全数据驱动的方法,不需要依赖相关领域知识和用户背景属性.最后作者基于文中的用户行为模式分析方法设计了一种面向内部攻击的检测方法.在实验中,作者使用文中方法分析了真实场景中的5种用户审计日志,实验结果验证了文中分析方法在多检测域场景中分析用户行为多元模式的有效性,同时文中检测方法优于两种已有方法:单域检测方法和基于单一行为模式的检测方法.User behavior analysis is an important problem in the system security research filed.Recently existing work mainly focused on the single pattern analysis of user single-domain behavior,which needed to rely on expert's knowledge and user background knowledge.Thus,these work were not suitable for user behavior pattern analysis in the multi-domain scenarios.In this paper,we proposed a novel method for the user cross-domain behavior analysis.Our method could identify multi-pattern of user cross-domain behavior.Moreover,our method was a completely data driven resolution which did not need any expert's knowledge and user background knowledge.At last,we also designed an insider attack detection method based on our user behavior analysis approach.In our experiment,we used our methods to analyze and detect five user audit logs in real environment.The experimental results showed that our user behavior analysis method was effective on the multi-pattern analysis of the user cross-domain behavior in the multi-domain scenarios,and our insider attack detection method was better than two existing solutions:a single-domain detection method and a single patterns based detection method.

关 键 词:内部威胁 多检测域 用户跨域行为分析 非负矩阵分解 高斯混合模型 机器学习 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象