检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410075 [2]湖南商学院数学与统计学院,长沙410205
出 处:《控制与决策》2016年第8期1446-1452,共7页Control and Decision
基 金:国家自然科学基金项目(61379111;61202342;61402538;61403424)
摘 要:研究在外界扰动影响下的通信拓扑为多图的一阶多智能体系统的协同一致性控制鲁棒性问题.采用闭环系统的2范数来度量系统的鲁棒性;借助代数图论、控制论和矩阵论,建立通信拓扑在有无自环时多智能体系统鲁棒性、系统2范数、系统通信拓扑之间的直接联系,并进行严格的证明;给出通信拓扑为完备图、星图、路图、环图时多智能体系统之间的收敛速度、鲁棒性分析与比较.仿真实例表明了所提出方法的有效性.This paper investigates the robustness problem for consensus and cooperative control of the first order multiagent systems with multi-graph communication affected by external disturbance. Robustness is quantified as the 2 norm of the closed-loop system. The direct relationship among robustness of consensus, system 2 norm, system communication topology for the oriented multi-agent systems are constructed when there exists self-loops or not in the communication topology in this note, which is based on the graph theory, the control theory and the matrix theory, and the rigorous proof is given in details. When the communication topology is complete graph, star graph, path graph and cycle graph, the convergence speed and robustness are analyzed and compared among them. Simulation examples are given to illustrate the effectiveness of the proposed methed.
关 键 词:多图 鲁棒性度量 一致性系统 协同一致性控制 2范数
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15