检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学地球科学学院,黑龙江大庆163318 [2]大庆油田第四采油厂,黑龙江大庆163511
出 处:《当代化工》2016年第7期1586-1588,1592,共4页Contemporary Chemical Industry
基 金:国家自然基金项目;项目号:41274132;东北石油大学研究生创新科研项目资助;项目号:YJSCX2016-004NEPU
摘 要:针对榆树林油田低孔渗储层水淹层识别难度大,提出以BP神经网络模型为理论基础,结合研究区岩心分析、试油、以及常规测井等资料,建立油层水淹状况与测井响应值之间的对应关系,实现对水淹层的高精度解释。通过对BP神经网络模型的训练,得到满足误差条件的最佳网络。运用最佳网络对测试数据进行检验分析,最终92.9%油层水淹状况解释准确,有效解决了低孔渗储层水淹层识别难度大,精度低的问题。Aiming at the problem that identification of water flooded layer was difficult in the low porosity and permeability reservoirs of Yushulin oilfield, taking BP neural network model as the theoretical basis, combined with core analysis of the study area, oil testing, as well as the conventional logging data, the relationship between water flooded status and logging response values was established to enhance the precision of interpretation about the water flooded layer. The best network that can satisfy error condition was got by training of the BP neural network model. Then the best network was used to test the testing data. The results show that, 92.9% of oil reservoir water flooded lay identification result is accurate, and it can effectively solve the problem of water flooded layer identification in low porosity and permeability reservoirs.
关 键 词:榆树林油田 低孔渗储层 水淹层识别 BP神经网络
分 类 号:TE133[石油与天然气工程—油气勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15