正则化度修正随机块模型的演化网络社团发现  被引量:2

Regularized Degree-corrected Stochastic Block Model for Evolving Network Community Detection

在线阅读下载全文

作  者:王亭亭[1] 戴维迪[1,2] 焦鹏飞[1] 李晓明[1] 

机构地区:[1]天津大学计算机科学与技术学院,天津300072 [2]天津市认知计算与应用重点实验室,天津300072

出  处:《计算机工程》2016年第8期134-138,共5页Computer Engineering

基  金:天津市技术创新引导专项优秀科技特派员基金资助项目(14JCTPJC00517)

摘  要:目前大多数用于社团发现问题的模型只适用于静态网络而忽视了时序信息,因此,无法较好地建模真实世界数据。针对该问题,提出一种基于度修正随机块模型的演化社团发现模型。根据演化聚类框架的原理,基于社团隶属矩阵将一个正则项引入到度修正随机块模型的目标函数中。利用网络交叉验证方法进行模型选择,处理社团个数随时间变化的演化网络,从而克服由于假定社团个数为常量而导致的与真实世界数据不相符合的问题。实验结果表明,与经典的动态随机块模型和Facet Net相比,该模型具有较高的准确性和较低的误差率。Nowadays,many models for community detection are designed only for static networks, which ignore the temporal information and are always not ideal to model the real world data. In order to solve this problem, an evolving community detection model based on the degree-corrected block model is proposed. According to the theory of the framework of evolutionary clustering, the model introduces a regularization term based on the community membership matrix into the objective function of the degree-corrected stochastic block model. The network cross-validation approach is utilized for model selection, so the proposed method is able to deal with evolving networks with variational numbers of communities. In this way,it overcomes the problem of assuming the number of communities as a constant, which is not consistent with real world data. Experimental results show that the model has a better performance with higher accuracy and lower error rate compared with the classical dynamic stochastic block model and the FacetNet.

关 键 词:演化网络 演化分析 社团发现 模型选择 随机块模型 节点特性 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象