检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院信息融合研究所,山东烟台264001 [2]北京航空航天大学电子信息工程学院,北京100191
出 处:《系统工程与电子技术》2016年第9期2040-2047,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61471383)资助课题
摘 要:针对杂波环境下多传感器跟踪多目标的问题,提出了一种基于速度方位约束的多传感器模糊数据互联算法(multi-sensor fuzzy data association method based on velocity and azimuth,VA-MSFDA)。该算法首先利用方位速度信息对确认区域内的有效量测作进一步筛选,剔除部分虚假量测,然后基于模糊聚类方法计算候选量测与观测区域内各目标互联的概率,应用顺序结构多传感器联合概率数据互联(multi-sensor joint probabilistic data association algorithm,MSJPDA)原理,依次处理各传感器中的目标测量数据,实现对多目标的跟踪。仿真结果表明,与顺序MSJPDA相比,VA-MSFDA在算法耗时、估计精度、收敛速度和量测正确关联率等方面优势明显,能够更好地解决杂波环境下的多目标跟踪问题。To deal with the problem of multi-sensor tracking multi-target in a cluttered environment, a novelmulti-sensor fuzzy data association method based on velocity and azimuth (VA-MSFDA) is proposed. Firstly, the validated measurements are selected based on course and velocity information, and some false measurementsare eliminated. Then the association probabilities between candidate measurements and targets are calculatedon the basis of fuzzy clustering. Finally, the selected target? s measurements from different sensors aredealt with on the basis of sequential multi-sensor joint probabilistic data association (MSJPDA) algorithm, andthe target's estimation is obtained. Simulation results show that VA-MSFDA outperforms the sequentialMSJPDA algorithm in the aspects of time consumption, tracking accuracy, convergence rate and correct associationprobability, which can be considered as a better method to solve the multi-target tracking problem.
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.188.113