检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州电子科技大学图形图像研究所,杭州310018
出 处:《中国生物医学工程学报》2016年第4期502-506,共5页Chinese Journal of Biomedical Engineering
基 金:浙江省自然科学基金资助项目(LY14F020043);国家自然科学基金(61370218)
摘 要:在图像对比度增强算法中,结合自适应直方图均衡化和对比度受限两项技术的对比度受限自适应直方图均衡化算法(CLAHE)是一种常用的低对比度图像增强算法。为了解决快速诊断试剂中的过敏原检测试纸条图像对比度低的问题,尝试给出一种改进的CLAHE图像增强新算法。新算法在传统的CLAHE算法的基础上,通过引入一个自适应参数T来自动调整图像每个子块的像素点重新分配的范围,从而达到增强图像细节的目的。通过对过敏原检测试纸条图像增强的实验对比分析,表明改进后的CLAHE算法可有效地改善该类医学试纸条图像的增强视觉效果,为后续医学试纸条的分割和识别奠定基础。与此同时,以图像均方根对比度为定量统计依据,与传统CLAHE算法的结果比较得出:改进的CLAHE算法明显提高图像均方根对比度,传统的CLAHE算法平均提高原图像均方根对比度1~2倍,而改进的CLAHE算法平均提高3~4倍,进一步验证新算法是一种对过敏原检测试纸条图像增强更为有效的方法。
关 键 词:图像增强 对比度受限自适应直方图均衡(CLAHE) 医学试纸条图像
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145