基于逆透视变换的车辆排队长度检测方法及硬件实现  被引量:3

Vehicles Queue Length Detection Based on Inverse Perspective Mapping and Its Hardware Implementation

在线阅读下载全文

作  者:王闯[1] 贺莹[1] 

机构地区:[1]中航工业西安航空计算技术研究所,西安710065

出  处:《计算机测量与控制》2016年第8期28-31,共4页Computer Measurement &Control

基  金:国家自然科学基金重点基金项目(61134004)

摘  要:交通路口的车辆排队长度检测是智能交通系统的重要组成部分,传统的检测方法易受背景噪声、摄像机透视效果等因素的干扰造成检测失败,而且其实现都是基于串行结构的处理器,不能用于实时处理的场合;设计了一种充分利用平直道路几何特征并适合FPGA实现的排队长度自动检测算法,该算法利用逆透视变换消除图像几何失真,引入公路的结构性约束有效检测了车道线;接着采用Sobel边缘算子检测出各车道的车辆轮廓,通过一种基于信息量的度量方法提取排队的队尾,从而确定了车辆排队长度,并且通过硬件化设计使得整个检测过程达到实时的处理速度;试验结果表明,在消除了视觉偏差的图像上进行的排队长度检测结果比校正前更加真实准确,所提出的检测方法可以很容易工程化并用于实际交通路口的车流量自动实时检测。Vehicles queue detection in intersection is an important component of the intelligent transportation system. The traditional de teetion methods are vulnerable to background noise and perspective effect of traffic image, and their implementation are based on the structure of serial processor, which is hard to meet the real-time processing requirements of visual applications. Thus, take advantage of the geome- try characteristics of flat road, this paper develops a novel vehicles queue detection algorithm suitable [or FPGA iruplementation. It [irstly e liminates the geometric distortion of image sequence using inverse perspective mapping method, and detects the lane markers by introducing in structural constraints of road; on this basis, it extracts the contours of vehicles queue using Sobel algorithm and determines the queue tail by adopting a kind of measurement based on entropy. Moreover, the hardware architecture design in FPGA makes the entire algorithm a chieve real-time processing speed. Test results show that after eliminating the visual deviation of the image, the queue length detection re sult is more accurate, and the proposed detection method can be easily engineered and used for automatic real-time detection of actual traffic intersection traffic.

关 键 词:逆透视变换(IPM) 现场可编程门阵列(FPGA) 车道线检测 排队长度 SOBEL算子 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] U491[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象