检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学计算机科学学院,陕西西安710119
出 处:《电子设计工程》2016年第15期5-8,12,共5页Electronic Design Engineering
基 金:国家自然科学基金(41271387)
摘 要:为了优化云计算环境下任务调度,考虑调度过程中任务的最短完成时间、系统的负载均衡和经济成本3个目标约束,然而3个目标约束之间存在冲突,因此提出了一种使用改进粒子群优化算法来解决云计算任务调度中多目标优化问题,达到同时兼顾3个目标约束的目的。选择惯性权重的模糊自适应策略对粒子群算法进行改进,从而能很好的平衡粒子的全局搜索能力和局部搜索能力,尽量避免过早收敛和陷入局部极值,并且引入移动子和负载因子的概念,用于实现算法对云计算环境下的任务调度。仿真结果表明,该算法对多目标优化问题,具有较好的寻优能力。For optimizing the task scheduling of cloud computing environment,it processes to consider the shortest completion time, load balancing, system constraints and economic costs of the three objectives, however, there is still have a conflict between these three objectives of constraints, thus we propose a method of using improved Particle swarm optimization(PSO)algorithms to solve the purpose of cloud computing task scheduling for multi-objective optimization problem to consider the three objectives constraints. Improving the global search ability and local search capability by using Fuzzy Adaptive Inertia Weight PSO strategy so that the particles can be well balanced to avoid premature convergence and local extremum,introducing the concept of the moving element and the load factor for the realization of task scheduling algorithm for cloud computing environments.Simulation results show that the algorithm for multi-objective optimization problem has better search capability.
关 键 词:云计算 任务调度 粒子群算法 最短完成时间 负载均衡 经济成本
分 类 号:TN602[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68