检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第三军医大学西南医院放射科,重庆400038 [2]第三军医大学西南医院烧伤研究所,重庆400038 [3]第三军医大学数学与生物数学教研室,重庆400038
出 处:《数学的实践与认识》2016年第15期11-20,共10页Mathematics in Practice and Theory
基 金:第三军医大学立项课题(20130B08)
摘 要:研究的是以能耗最低为目标的单、多列车优化调控方案问题.首先根据列车运行的各个阶段的分析,构建以运行能耗最低为目标的非线性规划模型,采用逐步迭代算法进行求解,得到的最佳运行模式为无惰行运行,相应的最小能耗为12.47kwh.对于无高峰期的多列车节能运行控制问题,建立了以回收能量最多为目标的0-1非线性规划模型,得到发车间隔为578.86s、575.59s和760.89s,并以此规律循环33轮的发车间隔时间表,使得能量回收最大为250.57kwh,回收率为19.66%.对于存在早晚高峰的情形,建立了以回收能量最多为目标的5阶段0.1非线性规划模型,求出了全天的最优发车方案.The purpose of this study is to get the optimal control scheme of single or multiple trains based on the minimum energy consumption.Firstly according to the various stages of train operation,we establish the nonlinear programming model with the goal of the minimum energy consumption.By using iterative algorithm,we get the best operating mode,that is to run without idle running,and the minimum energy consumption is 12.47 kwh correspondingly.For the multiple trains not during the peak traffic,aiming at recycling the most energy,nonlinear 0-1 programming model is established.And we get the schedule with departure intervals are 578.86 s,575.59 s,760.89 s,and cycling for 33 rounds.Energy recovery maximum reaches to 250.57 kwh,and recovery is 19.66%.As to the situation with peak traffic,we establish another nonhnear 0-1 programming model with 5 stages to get the optimal schedule for the whole day.
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222