检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙贤明[1] 樊晓光[1] 禚真福[1] 黄雷[1] 陈少华[1]
机构地区:[1]空军工程大学航空航天工程学院,西安710038
出 处:《空军工程大学学报(自然科学版)》2016年第4期64-69,共6页Journal of Air Force Engineering University(Natural Science Edition)
基 金:航空科学基金(201428960220)
摘 要:为了提高模拟电路故障诊断的精度,针对现有DAG-SVM用于解决多类分类问题固有的不稳定性结构以及"误差累积"的特点,提出了一种基于故障区分度构建DAG-SVM的新方法。根据从不同测试点获取的故障数据信息,定义故障区分度,并以此为依据优化DAG-SVM的拓扑结构,从而消除DAG-SVM结构固有的不稳定性,获得稳定而较高的诊断精度。实验结果表明,与现有的"1vs 1"SVM、DAG-SVM及其改进方法相比,该方法在诊断精度上有明显提高,对于模拟电路的故障诊断具有很好的借鉴意义。In order to improve the accuracy of fault diagnosis in analog circuits,aimed at the instability structure and error transferring of the existing directed acyclic graph support vector machine (DAG-SVM),a novel approach based on fault distinguish degree to construct DAG-SVM is proposed.According to the fault information acquired from all of the testable points,this paper defines the concept of fault dis-tinguish degree,and takes this as a basis to optimize the topology of the DAG-SVM to eliminate the inher-ent instability of DAG-SVM structure.For this reason,there is a stable and quite good accuracy of diagno-sis.The experimental results show that this method improves obviously diagnosis accuracy compared with"1 vs 1",SVM,and traditional DAG-SVM,and simultaneously the method can be used for reference in an-alog circuit fault diagnosis.
关 键 词:模拟电路 故障诊断 多类分类 有向无环图支持向量机 故障区分度
分 类 号:TP277.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15