检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学土木建筑工程学院,北京100044 [2]轨道工程北京市重点实验室,北京100044
出 处:《现代隧道技术》2016年第4期61-69,共9页Modern Tunnelling Technology
基 金:国家自然科学基金资助项目(41372351)
摘 要:在弹性力学基础上,应用突变理论建立了岩溶隧道开挖时掌子面与隐伏溶洞安全距离的非线性-尖点突变模型。将岩梁假设为固支单位宽度的弹性梁和周围固支的弹性圆板力学模型,给出了不同尺寸溶洞与掌子面斜交和正交(溶洞的跨度大于和小于隧道直径)空间状态下的突变理论安全距离计算公式,对隧道掌子面与不同空间状态溶洞安全距离的因素进行了分析研究,结合新建沪昆客专(贵州段)岩溶隧道的工程实例进行分析,分析结果表明:用尖点突变模型描述隧道与不同空间状态下隐伏溶洞安全距离的方法是合理的、有效的,对岩溶隧道的施工建设有指导作用。Based on elastic mechanics, a nonlinear-cusp catastrophic model is built to research the sate distance between the working face and a concealed cave during excavation of a karst tunnel in accordance with catastrophe theol7. Two models are established with the rock beam assumed to be an elastic beam with fixed and supported ends of unit-width and an elastic circular plate with fixed and supported periphery. Additionally, a formula is presented for the safe distance concerning catastrophe theory in a case where the working face is skewed or orthogonal to the karst cave with different sizes (i.e., the span of the karst cave is smaller or larger than the diameter of the tunnel), and the factors regarding the safe distance between the working face and the karst caves under the above different spatial states are analyzed. Based on a case study of the Shanghai-Kunming passenger dedicated line (the Guizhou section), it is determined that it is reasonable and feasible to use a cusp catastrophic model to describe the safe dis- tance between the tunnel and concealed karst caves with different spatial states, and this model has certain guid- ance functions for the construction of karst tunnels.
关 键 词:突变理论 岩溶隧道 隐伏溶洞 空间形态 安全距离
分 类 号:U458[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229