检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李锋刚[1,2] 骆林[1,2] 陈亚波[1,2] 蒋祥飞[1,2]
机构地区:[1]合肥工业大学管理学院,安徽合肥230009 [2]合肥工业大学过程优化与智能决策教育部重点实验室,安徽合肥230009
出 处:《计算机工程与科学》2016年第9期1870-1877,共8页Computer Engineering & Science
基 金:国家自然科学基金(71301041;71271071);国家"863"云制造主题项目(2011AA040501);人社部留学回国人员科技活动择优资助项目
摘 要:针对粒子群算法易跳过全局极值,且只能求解连续性问题的缺点,提出离散复形法局部搜索的思想,来有效提高粒子群算法在离散型问题中的搜索性能。针对粒子群算法易陷入局部极小的缺点,引入自适应粒子迁徙操作保证粒子的多样性,有效避免陷入局部收敛。对采用CVaR度量风险、构建有交易费用和限制证券比例的均值-CVaR投资组合模型进行仿真实验,实验结果验证了算法的有效性。将改进的粒子群算法应用到求解均值-CVaR模型的投资组合问题,与其他算法相比,该方法精度更高、性能更稳定。The particle swarm optimization (PSO) has a strong capability of global search, but it eas- ily falls into global extremum. Besides, it can only solve the continuity problems. In order to improve these problems, we present a discrete complex method of local search, which can enhance the search ca- pability when solving discrete problems. Since the PSO is easy to fall into local minimum, we introduce the adaptive particle migration operation to ensure the diversity of particles and avoid falling into local convergence effectively. Simulation experiments adopt the CVaR risk measurement method to measure portfolio risks, and establish an optimization mean-CVaR model which contains the transaction costs and the limitation proportion of the assets. Experimental results verify the effectiveness of the algorithm. Compared with other algorithms, the improved PSO algorithm has higher precision and stability.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.97