检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]丽水学院工程与设计学院,浙江丽水323000 [2]浙江师范大学数理与信息工程学院,浙江金华321004
出 处:《计算机应用与软件》2016年第9期269-272,共4页Computer Applications and Software
基 金:国家自然科学基金面上项目(11171137);浙江省自然科学基金项目(LY13A010008)
摘 要:在剔除影响单隐层前馈神经网络性能的"脏数据"后,传统的极限学习机算法需要重新训练整个网络,这会增加很多额外的训练时间。针对这一问题,在传统的极限学习机算法的基础上,提出一种在线负增量学习算法:剔除"脏训练样本"后,不需要再重新训练整个网络,而只需在原有的基础上,通过更新外权矩阵来完成网络更新。算法复杂性分析和仿真实验的结果表明所提出的算法具有更高的执行速度。After weeding out the dirty data that affecting the performance of single hidden layer feedforward network, traditional extreme learning machine has the need to train the entire networks. However, this will increase a lot of extra training time. In light of this issue, the paper proposes an online negative incremental algorithm based on traditional extreme learning machine algorithm:after the "dirty training sample" being eliminated, there has no need to train the whole networks once again, but only need to accomplish the network update by updating output weights matrix on the basis of original. The complexity analysis of the algorithm and the result of simulation experiment show that the proposed algorithm has higher execution speed.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63