基于ST-SRCKF的超高速强机动目标跟踪算法  被引量:7

Highly maneuvering hypervelocity-target tracking algorithm based on ST-SRCKF

在线阅读下载全文

作  者:方君[1] 戴邵武[2] 许文明[3] 邹杰 王永庭 

机构地区:[1]海军航空工程学院研究生管理大队,烟台264001 [2]海军航空工程学院控制工程系,烟台264001 [3]南华大学网络信息中心,衡阳421001 [4]中国航空工业集团光电控制技术重点实验室,洛阳471009

出  处:《北京航空航天大学学报》2016年第8期1698-1708,共11页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家自然科学基金(61203168);航空科学基金(20135184007)~~

摘  要:针对超高速强机动目标运动模型难以准确建立且观测数据易出现不良量测而导致滤波发散的问题,提出一种适用于超高速强机动目标的跟踪算法。该算法根据正交性原理推导了一种新的强跟踪平方根容积卡尔曼滤波(ST-SRCKF)结构,并引入多重渐消因子,渐消因子求解方法和作用位置均不同于已有的ST-SRCKF。根据新息的统计学特性,即新息协方差矩阵的迹服从卡方分布,建立了一种改进的CS-Jerk模型,该模型对目标机动的描述更准确,它与改进ST-SRCKF算法的结合实现了对超高速强机动目标的高精度跟踪。仿真结果表明,改进算法对超高速强机动目标的跟踪性能更佳。The movement model of highly maneuvering hypervelocity-target is difficult to construct accurately, and the existence of bad measurements in tracking process may lead to filtering divergence. In order to deal with these problems, a tracking algorithm applicable to highly maneuvering hypervelocity-target is proposed. This algorithm derives a new strong tracking square-root cubature Kalman filter (ST-SRCKF) structure from the orthogonality principle, and introduces multiple fading factors. The solution and function position of fading factors are both different from original ST-SRCKF. According to the statistical characteristics of innova- tion that the trace of innovation covariance matrix is in a chi-square distribution, a modified CS-Jerk model is constructed. The model describes target movement more accurately. When the modified CS-Jerk model is com- bined with the modified ST-SRCKF, highly maneuvering hypervelocity-target is tracked with high precision. Simulation results show that the modified algorithm has better tracking performance for highly maneuvering hy- pervelocitytarget.

关 键 词:强机动目标跟踪 平方根容积卡尔曼滤波(SRCKF) 强跟踪滤波(STF) 多重渐消因子 CS-Jerk模型 

分 类 号:TN953[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象